Further investigations of the reactivity of η^{2}-bonded nitroso complexes of platinum. The crystal structure of $\mathbf{P t}\left(\mathbf{P P h}_{3}\right)_{2}(\mathbf{P h N O})$ *

Maddalena Pizzotti, Francesca Porta, Sergio Cenini
Dipartimento di Chimica Inorganica e Metallorganica and CNR Center, Via Venezian 21, 20133 Milano (Italy)

Francesco Demartin and Norberto Masciocchi
Istituto di Chimica Strutturistica Inorganica, Via Venezian 21, 20133 Milano (Italy)
(Received December 30th, 1986)

Abstract

The crystal structure of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{PhNO})$ (I) has been determined. This is the first example of a structure determination for a monomeric complex of a metal in a low oxidation state and bearing an η^{2}-bonded nitroso ligand. Compound I crystallizes in the monoclinic space group $P 2_{f} / c$ (no.14) with $a 14.228(4), b 13.914(3)$, c $17.855(4) \AA, \beta 100.31(2)^{\circ}, V 3478(3) \AA^{3}$ and $Z=4$. Final R and R_{w} indices are 0.026 and 0.030 for 3609 observed reflections $(I \geqslant 3 \sigma(I))$.

The new complexes $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{RNO})\left(\mathrm{R}=\mathrm{Bu}^{\mathrm{t}}\right.$ (II), CF_{3} (III)) have been synthesized and their reactions with $\mathrm{CO}_{2}, \mathrm{CS}_{2}, \mathrm{PhNCO}, \mathrm{PhNCS}, \mathrm{CO}$, alkenes and dimethyl acetylenedicarboxylate have been investigated and compared with those of the previously studied compound I. Preliminary observations on the synthesis and reactivity of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CF}_{3} \mathrm{NO}\right)$ (IV) are also reported.

Introduction

Studies on the reactions of complexes containing an η^{2}-bonded nitroso ligand are of interest from several points of view. In the first place nitroso compounds, RNO, are the probable intermediates in the reduction by carbon monoxide of nitro compounds, RNO_{2}, catalysed by transition metal complexes [1]; such reductive carbonylation reaction is of practical interest for the search for a route to iso-

[^0]cyanates, RNCO , which does not involve the reaction of the dangerous and corrosive phosgene, COCl_{2}, with amines [1]. In the second place, nitroso compounds are isoelectronic with dioxygen, and their reactions with transition metal complexes can give information on the activation of this important molecule by metal centres.

We have previously studied the reactions of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{PhNO})$ (I) with unsaturated hydrocarbons [2,3], carbon dioxide, and CO_{2}-like species [2,4,5]. We report here the crystal and molecular structure of compound I, which represents the first example of determination of a structure of a monomeric complex of a metal in a low oxidation state and containing an η^{2}-bonded nitroso ligand. We also describe the syntheses of the new complexes $\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{RNO})\left(\mathrm{M}=\mathrm{Pt}, \mathrm{R}=\mathrm{Bu}^{\mathrm{t}}\right.$ (II), $\mathrm{R}=\mathrm{CF}_{3}$ (III); $\mathrm{M}=\mathrm{Pd}, \mathrm{R}=\mathrm{CF}_{3}$ (IV)). Their reactions with carbon oxides, CO_{2}-like molecules, and unsaturated hydrocarbons have been investigated, and the influence of the R group in these reactions is discussed.

Description of the structure of $\mathbf{P t}\left(\mathbf{P P h}_{\mathbf{3}}\right)_{\mathbf{2}} \mathbf{(P h N O)}$ (I)

The molecular structure of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{PhNO})$ is shown in Fig. 1. Selected bond distances and angles are listed in Table 1.

The discrete mononuclear molecules contain a three-coordinate platinum atom bearing two triphenylphosphine ligands and bound to a phenylnitroso ligand in an η^{2}-fashion to give a three-membered platinaoxaziridine ring. The $\mathrm{Pt}-\mathrm{P}(1)$ distance, approximately trans to O , of $2.239(2) \AA$, is slightly shorter than the $\mathrm{Pt}-\mathrm{P}(2)$ one, trans to $\mathrm{N}(2.272(2) \AA)$. In spite of the similarities in $\mathrm{Pt}-\mathrm{P}$ distances observed here with those for square-planar platinum complexes $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PtL}$ (with cis-triphenylphosphine ligands and L a chelating ligand), a significant enlargement of the

Fig. 1. ORTEP drawing of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{PhNO})$ (I).

Table 1
Selected bond distances (\AA) and angles (${ }^{\circ}$) for compound I

$\mathrm{Pt}-\mathrm{P}(1)$	$2.239(2)$	$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$	$106.52(6)$
$\mathrm{Pt}-\mathrm{P}(2)$	$2.272(2)$	$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{N}$	$106.1(2)$
$\mathrm{Pt}-\mathrm{N}$	$2.084(5)$	$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{O}$	$146.2(1)$
$\mathrm{Pt}-\mathrm{O}$	$2.031(4)$	$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{N}$	$147.3(2)$
$\mathrm{N}-\mathrm{O}$	$1.410(7)$	$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{O}$	$107.3(1)$
$\mathrm{N}-\mathrm{C}(1)$	$1.412(9)$	$\mathrm{O}-\mathrm{Pt}-\mathrm{N}$	$40.0(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.382(10)$	$\mathrm{O}-\mathrm{N}-\mathrm{C}(1)$	$110.9(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.390(12)$	$\mathrm{Pt}-\mathrm{N}-\mathrm{O}$	$68.0(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.367(14)$	$\mathrm{Pt}-\mathrm{O}-\mathrm{N}$	$72.0(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.366(13)$	$\mathrm{Pt}-\mathrm{N}-\mathrm{C}(1)$	$109.7(4)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.380(12)$		
$\mathrm{C}(6)-\mathrm{C}(1)$	$1.394(10)$		
$\mathrm{P}(1)-\mathrm{C}(1 \mathrm{li1})_{\text {av }}$	1.829		
$\mathrm{P}(2)-\mathrm{C}(2 i 1)_{\text {av }}$	1.825		

$\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angle can be seen in complex I: the value of $106.52(6)^{\circ}$ is outside the range of values usually found for $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PtL}$ tetra-coordinate complexes [5-7].

The N and O atoms lie on the same side $0.054(6)$ and $0.057(6) \AA$ out of the plane defined by atoms $\mathrm{Pt}, \mathrm{P}(1)$ and $\mathrm{P}(2)$, indicating a very slight pyramidal distortion of the coordination geometry.

The pattern of bond distances and angles within the platinaoxaziridine ring (see Table 1) is consistent with an $s p^{3}$-hybridization for the \mathbf{N} atom. The $\mathrm{Pt}-\mathrm{N}$ distance (2.084(5) $\AA)$ is longer than that found in $\mathrm{PtCl}_{2}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}(\mathrm{NO})\right]_{2}$ [8] (1.967(9) $\left.\AA\right)$ for a N-coordinated nitroso ligand, and is comparable with a $\mathrm{Pt}-\mathrm{N}$ (aminic) interaction. The values of both the $\mathrm{N}-\mathrm{O}$ and $\mathrm{N}-\mathrm{C}(1)$ bond lengths suggest a predominant single bond character. The length of the $\mathrm{N}-\mathrm{O}$ bond can be compared with that of the corresponding bond in oxo (N-phenyl-hydroxylamido- O, N)(pyridine-2,6-dicarboxylato)(hexamethylphosphoramide)molybdenum (VI), (1.416(7) \AA) [9] and in bis[tri-carbonyl-(3-chloro-2-methylnitrosobenzene)iron], (1.40(1) \AA) [10], it is slightly longer than that in $\left[\mathrm{Pd}(\mathrm{PhNO})\left(\mathrm{PBu}_{3}^{\mathrm{t}}\right)\right]_{3},(1.35(1) \AA)[11]$. The $\mathrm{Pt}-\mathrm{O}$ bond length $(2.031(4)$ \AA) agrees well with the value of $2.044(5) \AA$ found in $\stackrel{\left.\mathrm{Pt}\{\mathrm{ON}(\mathrm{Ph}) \mathrm{C}(\mathrm{NPh}) \mathrm{S}\}\left(\mathrm{PPh}_{3}\right)_{2}\right)}{ }$ [5] obtained by insertion of $\mathrm{Ph} N=\mathrm{C}=\mathrm{S}$ into the platinum-nitrogen bond of complex I. The phenyl ring of the arylnitroso ligand is slightly twisted about the $\mathrm{N}-\mathrm{C}(1) \cdots$ $\mathrm{C}(4)$ axis (torsional angle $\mathrm{O}-\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2) 5^{\circ}$) and faces the almost parallel $\mathrm{C}(111)-\mathrm{C}(116)$ phenyl plane at a distance corresponding to a "graphitic" interaction (see Fig. 1).

Synthesis of the complexes $\mathbf{M}\left(\mathbf{P P h}_{3}\right)_{\mathbf{2}}(\mathbf{R N O})\left(\mathbf{M}=\mathbf{P t}, \mathbf{R}=\mathbf{B u}^{\mathbf{t}}\right.$ (II), $\mathbf{C F}_{\mathbf{3}}$ (III); $\mathbf{M}=\mathbf{P d}, \mathbf{R}=\mathbf{C F}_{\mathbf{3}}$ (IV))

Reaction of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)$ with $\mathrm{Bu}^{\mathrm{t}} \mathrm{NO}$ in benzene under dinitrogen gave $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{NO}\right)$ (II) (eq. 1) (Table 2).

$$
\begin{equation*}
\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)+\mathrm{Bu}^{\mathrm{t}} \mathrm{NO} \xrightarrow{\text { benzene }} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{NO}\right)+\mathrm{C}_{2} \mathrm{H}_{4} \tag{1}
\end{equation*}
$$

It is noteworthy that the reaction of $\mathrm{Bu}^{\mathrm{t}} \mathrm{NO}$ with ethylene bound to platinum(II) gives a σ-alkyl-nitrone complex, derived by attack of the nitroso compound on the electrophilic alkene [12].

Table 2
Physical, analytical and IR data

Compound	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	Analysis (Found (calc) (\%))			$\begin{aligned} & \nu\left(\mathrm{cm}^{-1}\right) \\ & \text { (in Nujol) } \end{aligned}$	
		C	H	N		
$\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{NO}\right) \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{II})$	123	$\begin{gathered} 61.0 \\ (61.1) \end{gathered}$	$\begin{gathered} 5.0 \\ (5.0) \end{gathered}$	$\begin{gathered} 1.6 \\ (1.7) \end{gathered}$	960	(NO)
$\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CF}_{3} \mathrm{NO}\right)(\mathrm{III})$	174	$\begin{gathered} 54.9 \\ (54.3) \end{gathered}$	$\begin{gathered} 3.8 \\ (3.7) \end{gathered}$	$\begin{gathered} 1.5 \\ (1.7) \end{gathered}$	840	(NO)
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CF}_{3} \mathrm{NO}\right)(\mathrm{IV})$	157	$\begin{array}{r} 60.4 \\ (60.9 \end{array}$	$\begin{gathered} 4.2 \\ (4.1) \end{gathered}$	$\begin{gathered} 1.9 \\ (1.9) \end{gathered}$	845	(NO)
$\stackrel{\mathrm{Pt}\left(\mathrm{ON}\left(\mathrm{Bu}^{\mathrm{t}}\right) \mathrm{C}(\mathrm{O}) \mathrm{O}\right\}}{ }\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~V})$	158-160	$\begin{gathered} 57.6 \\ (57.9) \end{gathered}$	$\begin{gathered} 4.7 \\ (4.6) \end{gathered}$	$\begin{gathered} 1.8 \\ (1.6) \end{gathered}$	1608	($\mathrm{C}=0$)
$\widehat{\mathrm{Pt}\left\{\mathrm{ON}\left(\mathrm{Bu}^{\mathbf{t}}\right) \mathrm{C}(\mathrm{S}) \mathrm{S}\right\}}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{VI})$	199	$\begin{gathered} 55.6 \\ (55.8) \end{gathered}$	$\begin{gathered} 4.6 \\ (4.4) \end{gathered}$	$\begin{gathered} 1.7 \\ (1.6) \end{gathered}$	960	($\mathrm{C}=\mathrm{S}$)
$\mathrm{Pt}\left\{\mathrm{ON}\left(\mathrm{CF}_{3}\right) \mathrm{C}(\mathrm{S}) \mathrm{S}\right\}\left(\mathrm{PPh}_{3}\right)_{2}$ (VII)	219	$\begin{gathered} 50.5 \\ (51.0) \end{gathered}$	$\begin{gathered} 3.3 \\ (3.4) \end{gathered}$	$\begin{gathered} 1.9 \\ (1.6) \end{gathered}$	980	($\mathrm{C}=\mathrm{S}$)
$\begin{aligned} & \mathrm{Pt}\left\{\mathrm{ON}\left(\mathrm{Bu}^{\mathrm{t}}\right) \mathrm{C}(\mathrm{O}) \mathrm{NPh}\right\}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{6} \\ & \text { (VIII) } \end{aligned}$	183	$\begin{gathered} 62.0 \\ (61.0) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.8) \end{gathered}$	$\begin{gathered} 2.9 \\ (3.0) \end{gathered}$	1730	($\mathrm{C}=\mathrm{O}$)
$\underset{\mathrm{Pt}\left\{\mathrm{ON}\left(\mathrm{CF}_{3}\right) \mathrm{C}(\mathrm{O}) \mathrm{NPh}\right\}\left(\mathrm{PPh}_{3}\right)_{2} \text { (IX) }{ }^{\text {(}} \text { (}}{ }$	194	$\begin{gathered} 56.5 \\ (56.6) \end{gathered}$	$\begin{gathered} 3.9 \\ (3.7) \end{gathered}$	$\begin{gathered} 2.8 \\ (3.0) \end{gathered}$	1646	($\mathrm{C}=0$)
$\overrightarrow{\mathrm{Pt}\left\{\mathrm{ON}\left(\mathrm{Bu}^{\mathbf{t}}\right) \mathrm{C}(\mathrm{NPh}) \mathrm{S}\right\}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{X})}$	257	$\begin{gathered} 61.0 \\ (60.0) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.7) \end{gathered}$	$\begin{gathered} 2.8 \\ (3.0) \end{gathered}$	1530	$(\mathrm{C}=\mathrm{N})$
$\widehat{\mathrm{Pt}\left\{\mathrm{ON}\left(\mathrm{CF}_{3}\right) \mathrm{C}(\mathrm{NPh}) \mathrm{S}\right\}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{XI})}$	266	$\begin{gathered} 54.8 \\ (55.5) \end{gathered}$	$\begin{gathered} 3.6 \\ (3.7) \end{gathered}$	$\begin{gathered} 3.0 \\ (2.9) \end{gathered}$	1570	$(\mathrm{C}=\mathrm{N})$
$\begin{aligned} & \mathrm{Pt}\left\{\mathrm{ON}\left(\mathrm{Bu}^{\mathrm{t}}\right) \mathrm{CH}(\mathrm{Ph}) \mathrm{C}(\mathrm{CN})_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2} \\ & \text { (XII) } \end{aligned}$	129	$\begin{gathered} 62.4 \\ (62.5) \end{gathered}$	$\begin{gathered} 5.0 \\ (4.7) \end{gathered}$	$\begin{gathered} 4.0 \\ (4.4) \end{gathered}$	2200	$(\mathrm{C} \equiv \mathrm{N})$
$\begin{aligned} & \mathrm{Pt}\left\{\mathrm{ON}\left(\mathrm{CF}_{3}\right) \mathrm{CH}(\mathrm{Ph}) \mathrm{C}(\mathrm{CN})_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2} \\ & (\mathrm{XIII}) \end{aligned}$	194	$\begin{gathered} 57.3 \\ (58.0) \end{gathered}$	$\begin{gathered} 3.9 \\ (3.7) \end{gathered}$	$\begin{gathered} 3.9 \\ (4.3) \end{gathered}$	2210	$(\mathrm{C} \equiv \mathrm{N})$
$\begin{aligned} & \mathrm{Pt}\left\{\mathrm{ON}\left(\mathrm{CF}_{3}\right) \mathrm{C}(\mathrm{CN})_{2} \mathrm{C}(\mathrm{CN})_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2} \\ & \quad(\mathrm{XIV}) \end{aligned}$	198	$\begin{gathered} 54.2 \\ (54.5) \end{gathered}$	$\begin{gathered} 3.4 \\ (3.2) \end{gathered}$	$\begin{gathered} 6.7 \\ (7.4) \end{gathered}$	2220	$(\mathrm{C}=\mathrm{N})$
$\begin{aligned} & \mathrm{Pt}\left\{\mathrm{ON}\left(\mathrm{Bu}^{\mathrm{t}}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}- \\ & \left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{XV}) \end{aligned}$	180	$\begin{gathered} 57.0 \\ (58.2) \end{gathered}$	$\begin{gathered} 4.7 \\ (4.7) \end{gathered}$	$\begin{gathered} 1.3 \\ (1.5) \end{gathered}$	1715	$(\mathrm{C}=\mathrm{O})$

Compound II could not be obtained by reaction of $\mathrm{Bu}^{\mathrm{t}} \mathrm{NO}$ with $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{3}$. On the other hand, the enhanced π-acidic character of $\mathrm{CF}_{3} \mathrm{NO}$ allowed the synthesis of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CF}_{3} \mathrm{NO}\right)$ (III) directly from $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{3}$ [13] in diethyl ether (eq. 2) (Table 2).
$\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{3}+\mathrm{CF}_{3} \mathrm{NO} \xrightarrow{\text { diethyl ether }} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CF}_{3} \mathrm{NO}\right)+\mathrm{PPh}_{3}$

Similarly, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CF}_{3} \mathrm{NO}\right)$ (IV) was obtained by reaction of $\mathrm{CF}_{3} \mathrm{NO}$ with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in diethyl ether; the reaction of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$ with $\mathrm{CF}_{3} \mathrm{NO}$ in benzene has been reported to give an unstable, purple, paramagnetic complex of stoichiometry $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CF}_{3}\right)(\mathrm{NO})$ [14]. Repeated attempts to characterize the red-orange material obtained from the reaction of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ with PhNO were unsuccesful. Compound II shows a band at $960 \mathrm{~cm}^{-1}$ in its IR spectrum attributable to $\nu(\mathrm{NO})$ of the η^{2}-bonded nitroso ligand (Table 2). For compound I this band is observed at 975 cm^{-1}. In compounds III and IV $\boldsymbol{\nu}(\mathrm{NO})$ is lowered to $840-845 \mathrm{~cm}^{-1}$, which suggests a substantial reduction in the $\mathrm{N}-\mathrm{O}$ bond order in these derivatives with respect to compounds I and II, as one would expect since the CF_{3} group is strongly electron-

Table 3
${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}^{a}$ and ${ }^{19} \mathrm{~F}^{b}$ NMR data (δ (ppm), J values in Hz), $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ as solvent

Compound	$\begin{aligned} & \delta\left({ }^{1} \mathrm{H}\right) \delta\left({ }^{19} \mathrm{~F}\right) \\ & (\mathrm{Me}) \end{aligned}$		$\boldsymbol{\delta (} \mathbf{P}(1)) \delta(\mathrm{P}(2)) J(\mathrm{Pt}-\mathrm{P}(1)) J(\mathrm{Pt}-\mathrm{P}(2)) J(\mathrm{P}(1)-\mathrm{P}(2))$				
$\overline{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Bu}^{t} \mathrm{NO}\right) \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6} \text { (II) }}$	1.0	-	-	-	-	-	-
$\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CF}_{3} \mathrm{NO}\right)$ (III)	-	$-60.7{ }^{c}$	-	-	-	-	
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CF}_{3} \mathrm{NO}\right)$ (IV)	-	$-63.38{ }^{\text {d }}$	-	-	-	-	-
$\mathrm{Pt}\left\{\mathrm{ON}\left(\mathrm{Bu}^{\text {t }}\right) \mathrm{C}(\mathrm{O}) \mathrm{O}\right\}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~V})$	1.03	-	-	-	-	-	-
$\mathrm{Pt}\left\{\mathrm{ON}\left(\mathrm{Bu}^{\mathrm{t}}\right) \mathrm{C}(\mathrm{S}) \mathrm{S}\right\}\left(\mathrm{PPh}_{3}\right)_{2}$ (VI)	1.22	-	9.43	19.42	3643	2802.6	23.7
$\widehat{\mathrm{Pt}\left\{\mathrm{ON}\left(\mathrm{CF}_{3}\right) \mathrm{C}(\mathrm{S}) \mathrm{S}\right\}\left(\mathrm{PPh}_{3}\right)_{2} \text { (VII) }{ }^{\text {(}} \text { (}}$	-	-61.97	-	-	-	-	-
$\begin{aligned} & \mathrm{Pt}\left\{\mathrm{ON}\left(\mathrm{Bu}^{t}\right) \mathrm{C}(\mathrm{O}) \mathrm{NPh}\right\}\left(\mathrm{PPh}_{3}\right)_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6} \\ & \text { (VIII) } \end{aligned}$		-	9.03	16.42	3502	3274.4	27.6
$\mathrm{Pt}\left(\mathrm{ON}\left(\mathrm{CF}_{3}\right) \mathrm{C}(\mathrm{O}) \mathrm{NPh}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ (IX)	1	-66.6	7.44	15.24	3545.8	3337.5	27.5
Pt\{ON(Bu')C(NPh)S $\}\left(\mathrm{PPh}_{3}\right)_{2}$ (X)	1.02	-	11.17	21.95	3445	2987	22.87
Pt\{ON($\left.\left.\mathrm{CF}_{3}\right) \mathrm{C}(\mathrm{NPh}) \mathrm{S}\right\}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{XI})$	-	-66.2	8.71	22.80	3430.9	3067.9	21.7
$\begin{aligned} & \mathrm{Pt}\left\{\mathrm{ON}\left(\mathrm{Bu}^{\mathrm{t}}\right) \mathrm{CH}(\mathrm{Ph}) \mathrm{C}(\mathrm{CN})_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2} \\ & \text { (XII) } \end{aligned}$	0.41^{e}	-	-	-	-	-	-
$\begin{aligned} & \mathrm{Pt}\left\{\mathrm{ON}\left(\mathrm{CF}_{3}\right) \mathrm{CH}(\mathrm{Ph}) \mathrm{C}(\mathrm{CN})_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2} \\ & \text { (XIII) } \end{aligned}$		-69.31	-	-	-	-	-
$\begin{aligned} & \mathrm{Pt}\left\{\mathrm{ON}_{\left.\left(\mathrm{CF}_{3}\right) \mathrm{C}(\mathrm{CN})_{2} \mathrm{C}(\mathrm{CN})_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}}\right. \\ & (\mathrm{XIV}) \end{aligned}$		-69.84	-	-	-	-	-
$\begin{aligned} & \mathrm{Pt}\left\{\mathrm{ON}\left(\mathrm{Bu}^{\mathrm{t}}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}- \\ & \left(\mathrm{PPh}_{2}\right)_{2}(\mathrm{XV}) \end{aligned}$	0.81^{f}	-	14.21	29.91	3722.3	2354.6	18.32

${ }^{a}$ External standard: $85 \% \mathrm{H}_{3} \mathrm{PO}_{4} \cdot{ }^{b}$ Standard: CFCl_{3}. ${ }^{\text {c }}$ Multiplet due to the coupling of ${ }^{19} \mathrm{~F}$ with P-cis and P-trans: $J(\mathrm{~F}-\mathrm{P}$-trans $) 15 \mathrm{~Hz} . J(\mathrm{~F}-\mathrm{P}$-cis $) 13 \mathrm{~Hz} .{ }^{d}$ Multiplet due to the coupling of ${ }^{19} \mathrm{~F}$ with P trans, P cis and ${ }^{195} \mathrm{Pt}: J(\mathrm{~F}-\mathrm{P}$-trans $) 12.5 \mathrm{~Hz} ; J(\mathrm{~F}-\mathrm{Pt}) 56.0 \mathrm{~Hz} ; J(\mathrm{~F}-\mathrm{P}-$ cis $)$ was not clearly detected. ${ }^{e} \delta$ (CH) 3.74 with satellites due to coupling with ${ }^{195} \mathrm{Pt}, J(\mathrm{Pt}-\mathrm{H}) 25.46 \mathrm{~Hz} .{ }^{f} \delta\left(\mathrm{OCH}_{3}\right) 2.28(\mathrm{~s}) ; 3.56(\mathrm{~s})$.
withdrawing. The absorptions due to $\nu(\mathrm{CF})$ were observed in the $1000-1300 \mathrm{~cm}^{-1}$ region. In its ${ }^{1} \mathrm{H}$ NMR spectrum compound II shows a singlet at $\delta 1 \mathrm{ppm}$ due to the equivalent methyl groups (Table 3). The ${ }^{19} \mathrm{~F}$ NMR spectrum of III shows a complex signal at ca. $-60.75 \mathrm{ppm}\left(\mathrm{CFCl}_{3}\right.$ as reference) due to fluorine atoms coupled with P-trans and P-cis, and with satellites due to coupling with ${ }^{195} \mathrm{Pt}(J(\mathrm{Pt}-\mathrm{F}) 56 \mathrm{~Hz})$. The ${ }^{19} \mathrm{~F}$ NMR spectrum of IV shows an apparent triplet at -63.38 ppm , due to coupling with the two non-equivalent phosphorus atoms.

Reactions of compounds II and III

With carbon dioxide
Reaction of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{NO}\right)$ (II) with CO_{2} in benzene at room temperature gave a ca. 1:1 mixture of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)[15]$ and of $\widehat{\mathrm{Pt}\left\{\mathrm{ON}\left(\mathrm{Bu}^{\mathrm{l}}\right) \mathrm{C}(\mathrm{O}) \mathrm{O}\right\}\left(\mathrm{PPh}_{3}\right)_{2}, ~}$ (V) (eq. 3):

A similar reaction carried out with $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CF}_{3} \mathrm{NO}\right)$ (III) led to isolation of only the carbonato complex $\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)$.

When reaction 3 was carried out at ca. $5^{\circ} \mathrm{C}$, nearly pure V , containing traces of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)$, was isolated. Compound V is formulated as an insertion product of CO_{2} into the $\mathrm{Pt}-\mathrm{N}$ bond of II on the basis of its IR spectrum, which in the $\nu(\mathrm{CO})$ stretching frequency region is close to that of the insertion product of CO_{2} into the $\mathrm{Pt}-\mathrm{N}$ bond of I [4]. The structure of the latter compound has been confirmed by an X-ray structural study [2].

When compound V was dissolved in benzene at room temperature under a dinitrogen atmosphere, it was slowly and quantitatively transformed into the carbonato complex, $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)$. Repeated attempts to determine the fate of the $\mathrm{Bu}^{\mathrm{t}} \mathrm{N}$ nitrene residue in this reaction were unsuccessful. When dinitrogen was bubbled into a benzene suspension of V carbon dioxide was evolved, and compound II was isolated from the solution. These results indicate that the insertion of CO_{2} into the $\mathrm{Pt}-\mathrm{N}$ bond of II is reversible, as it is in the reaction of CO_{2} with compound I [4].

The formation of the carbonato complex in reaction 3 suggests either that the insertion product of CO_{2} into the $\mathrm{Pt}-\mathrm{O}$ bond of $\mathrm{II}\left(\mathrm{V}^{\prime}\right)$ must be present in solution (eq. 4), or that the insertion product with $\mathrm{CO}_{2}\left(\mathrm{~V}^{\prime}\right)$ is the only compound formed from II and CO_{2}. The latter possibility is supported by the observation that with compound III, in which the CF_{3} group will reduce the nucleophilic character of the nitrogen of the nitroso ligand, only the carbonato complex was isolated. However several insertion products obtained by reaction of III with CO_{2}-like molecules (see later) are derived from the attack of the nitrogen of the nitroso ligand to the electrophilic carbon atom of the entering molecule, as was observed for the analogous reactions of compound I [2,4,5]. The metallocycles obtained by the reactions with CO_{2} are of particular interest because they are the isomers of the intermediate postulated in the deoxygenation reactions of nitro compounds by coordinated carbon monoxide [1] (eq. 5):

With carbon disulphide

Reaction of II and III with CS_{2} led to isolation of the insertion products VI and

VII (eq. 6) (Tables 2 and 3):

 ${ }^{19}$ F NMR spectrum of VII shows a singlet at -61.97 ppm which has no satellites due to coupling with ${ }^{195} \mathrm{Pt}$. This excludes a formulation for VII such as

since in this case coupling with ${ }^{195} \mathrm{Pt}$ (and even with ${ }^{31} \mathrm{P}$) should be observed, as for compound III. As expected, the ${ }^{31} \mathrm{P}$ NMR spectrum of VI shows two cis non-equivalent phosphorus atoms, with satellites bands due to coupling with ${ }^{195} \mathrm{Pt}$ (Table 3). The ${ }^{31} \mathrm{P}$ NMR parameters are comparable with those for $\overline{\mathrm{Pt}\{\mathrm{ON}(\mathrm{Ph}) \mathrm{C}(\mathbf{S}) \mathrm{S}\}\left(\mathrm{PPh}_{3}\right)_{2}, ~}$ [4].

With $P h N=C=X(X=O, S)$
The reaction of compounds II and III with $\mathrm{PhN}=\mathrm{C}=\mathrm{X}(\mathrm{X}=\mathrm{O}, \mathrm{S})$ gave the insertion products VIII-XI (eq. 7) (Tables 2 and 3).

The X-ray structures of the corresponding insertion products with $\mathrm{R}=\mathrm{Ph}$ were determined previously, and the reasons for the difference in the reaction of PhNCO (cycloaddition to the $\mathrm{C}=\mathrm{N}$ bond) and that of PhNCS (cycloaddition to the $\mathrm{C}=\mathrm{S}$ bond) discussed [5].
 which was initially attributed to a $\nu(\mathrm{C}=\mathrm{N})$ band [4]. In compounds VIII and IX, the $\nu(\mathrm{CO})$ band appears at 1730 and $1646 \mathrm{~cm}^{-1}$, respectively. Thus in these metallo-
cycles $\boldsymbol{\nu}(\mathrm{CO})$ decreases in the order: $\mathrm{Bu}^{\mathrm{t}}>\mathrm{CF}_{3}>\mathrm{Ph}$, and there are no apparent reasons for these marked variations. On the other hand, the ${ }^{31} \mathrm{P}$ NMR spectra of compounds VIII and IX are very similar with that of $\widetilde{\mathrm{Pt}\{\mathrm{ON}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) \mathrm{NPh}\}\left(\mathrm{PPh}_{3}\right)_{2}}$ [4]. The ${ }^{19} \mathrm{~F}$ NMR spectrum of IX shows a singlet at $\delta-66.6 \mathrm{ppm}$, confirming the conclusion that insertion has taken place into the $\mathrm{Pt}-\mathrm{N}$ and not the $\mathrm{Pt}-\mathrm{O}$ bond of III.

For compounds X and XI the $\nu(\mathrm{C}=\mathrm{N})$ frequency $\left(1530-1570 \mathrm{~cm}^{-1}\right)$ and the ${ }^{31} \mathrm{P}$ NMR parameters are again entirely in agreement with those of $\mathrm{Pt}\{\mathrm{ON}(\mathrm{Ph}) \mathrm{C}(\mathrm{NPh}) \mathrm{S}\}-$ $\left(\mathrm{PPh}_{3}\right)_{2}$ [4]; a singlet was observed at $\delta-66.2 \mathrm{ppm}$ in the ${ }^{19} \mathrm{~F}$ NMR spectrum of XI.

With CO

The reactions of compounds I-III with CO were examined carefully, since the reaction of carbon monoxide with a coordinated nitroso compound corresponds to the final stage of the catalytic deoxygenation of nitro copounds [1] (eq. 8):

However the results, from several repeated reactions, were unsatisfactory for several reasons. Firstly, although CO_{2} was evolved ($\mathrm{R}=\mathrm{Ph}, \mathrm{CF}_{3}$) its amount was always less than that required by the stoichiometry of the reaction. Secondly, the only platinum derivative obtained was a known cluster carbonyl containing no nitrogen, viz. $\mathrm{Pt}_{3}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{x}(x=3$ and/or 4) [16]. Finally the fate of the RN nitrene residue was not established. The carbonylation of III gave a product showing a strong IR absorption at $2220 \mathrm{~cm}^{-1}$, which must be attributed to a NCO group directly bonded to platinum, since no absorptions due to $\nu(\mathrm{CF})$ were detected. The intermediate proposed in eq. 8 is not consistent with the results previously reported, since we always observed an attack of the nucleophilic centre in I-III, that is the nitrogen atom, on the electrophilic carbon of the entering molecule, except possibly for the reaction with CO_{2} (see above). Reaction with CO of a σ-nitrogen-bonded nitroso ligand in equilibrium with the η^{2}-bonded nitroso compound could perhaps account for the results obtained [1].

With alkenes and dimethylacetylenedicarboxylate

Reaction of compounds II and III with alkenes activated by strong electronwithdrawing substituents gave the complexes XII-XIV (eq. 9) (Tables 2 and 3):
$\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{RNO})+$

$$
\begin{aligned}
& \left(\text { XII, } R=B u^{t}, R^{1}=P h, R^{2}=H ;\right. \\
& \text { XIII, } R=C F_{3}, R^{1}=P h, R^{2}=H ; \\
& \text { XIV, } \left.R=C F_{3}, R^{1}=R^{2}=C N\right)
\end{aligned}
$$

Compounds XIII and XIV show the usual singlet in the ${ }^{19} \mathrm{~F}$ NMR spectrum, while the $\mathrm{Pt}-\mathrm{H}\left(\mathrm{R}^{2}\right)$ coupling constant observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of XII indicates that the carbon bearing this atom is not directly bonded to platinum [3]. Compound XIV proved to be particularly stable, and was recovered unchanged after prolonged refluxing of its benzene solution. Transfer of the nitrene residue to the inserted alkene should give the corresponding aziridine and a metal oxo derivative [3].

An insertion product (XV) was also obtained from the reaction of II with dimethyl acetylenedicarboxylate (eq. 10) (Tables 2 and 3). The IR, ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data for compound XV are very similar to those observed for the analogous insertion product obtained by reaction of I with $\mathrm{MeO}_{2} \mathrm{CC} \equiv \mathrm{CCO}_{2} \mathrm{Me}$ [3].

Reactions of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CF}_{3} \mathrm{NO}\right)$ (IV)
In order to see where not only the substituents in the nitroso ligand but also the metal influence the reactivity of η^{2}-bonded nitroso complexes, we also initiated a study of the reactions of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CF}_{3} \mathrm{NO}\right)$ (IV). We were rather surprised to find that compound IV does not react with CO and CO_{2} under the conditions used for compounds I-III. It does react with PhNCO, but give a product which has not yet been fully characterized. Further studies of the reactions of IV are planned.

Experimental

Magnetic stirring was used in all reactions. The complexes $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{3}$ and $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)$ were prepared as described previously [17,18]. The $\mathrm{CF}_{3} \mathrm{NO}$ and $\mathrm{Bu}^{\mathrm{t}} \mathrm{NO}$ were commercial products (Aldrich and Merck, respectively). All reactions were carried out under dinitrogen in dried solvents.

Elemental analyses were carried out by the Analytical Laboratories of Milan University. Infrared spectra were recorded on a Beckman IR 4210 spectrophotometer. The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a Bruker VP- 80 spectrometer, with SiMe_{4} and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$, respectively, as external standards. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Varian XL 300 and Varian XL 200 with CFCl_{3} as internal standard. All compounds were stored under dinitrogen.
$\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Bu}^{t} \mathrm{NO}\right) \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{II})$
A solution of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)(300 \mathrm{mg})$ in benzene $(15 \mathrm{ml})$ degassed with dinitrogen was cooled in a dry ice-acetone bath and $\mathrm{Bu}^{\mathrm{t}} \mathrm{NO}(100 \mathrm{mg})$ was added. The solution was kept in the dark and allowed to warm slowly to room temperature. After 5 h the green solution was evaporated to ca. half its volume, and n -hexane was added to produce a yellow-green precipitate. This was filtered off under dinitrogen, washed with n-hexane, degassed with dinitrogen, and dried in vacuo.
$\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CF}_{3} \mathrm{NO}\right)$ (III)
Gaseous $\mathrm{CF}_{3} \mathrm{NO}$ was bubbled for about 5 min into dry diethyl ether (30 ml) (any of the gas emerging being bubbled into a KOH solution). $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{3}(1 \mathrm{~g})$ was added, and after few minutes the bubbling was stopped. After 5 h the yellow precipitate was filtered off, washed with diethyl ether, and dried in vacuo.
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CF}_{3} \mathrm{NO}\right)(\mathrm{IV})$
Gaseous $\mathrm{CF}_{3} \mathrm{NO}$ was bubbled for 5 min into dry diethyl ether (20 ml) (any emerging gas again being bubbled into a KOH solution.) The $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (311 mg) was added, and after few minutes the bubbling was stopped. After 5 h the yellow-orange product was filtered off under dinitrogen, washed with diethyl ether, degassed with dinitrogen, and dried in vacuo.
$\left.\widehat{\operatorname{Pt}\left\{\mathrm{ON}\left(\mathrm{Bu} u^{t}\right) \mathrm{C}(\mathrm{O}) \mathrm{O}\right.}\right\}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~V})$
Dinitrogen and CO_{2} were bubbled through benzene (25 ml), cooled in ice, and $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{NO}\right)(490 \mathrm{mg})$ was then added. After 45 min the suspended solid was filtered under dinitrogen, washed with benzene, degassed with CO_{2}, and dried in vacuo. The yellow-orange compound obtained contained a little of the carbonato complex $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)$.

When the reaction was carried out at room temperature gave the carbonato complex in an amount comparable to that of the insertion product V .

When a similar procedure (at $0^{\circ} \mathrm{C}$) was carried out in THF but with the complex $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CF}_{3} \mathrm{NO}\right)$, the carbonato complex $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)$ was the only product.
$\left.\overline{P t\left\{O N\left(B u^{t}\right) C(S) S\right.}\right\}\left(P^{2} h_{3}\right)_{2}(V I)$
A solution of $\mathrm{CS}_{2}(188 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was degassed with dinitrogen and $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{NO}\right)(200 \mathrm{mg})$ was added. After 4 h the orange solution was evaporated to half its volume and n-hexane was added to give a yellow orange precipitate. This was filtered off under dinitrogen, washed with n-hexane, and dried in vacuo.
$\left.\overline{\left.\operatorname{Pt}\left\{\mathrm{ON}_{(} \mathrm{CF}_{3}\right) \mathrm{C}(\mathrm{S}) \mathrm{S}\right\}}\right\}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{VII})$
A solution of $\mathrm{CS}_{2}(185 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was degassed with dinitrogen (10 ml) and $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CF}_{3} \mathrm{NO}\right)(200 \mathrm{mg})$ was added. After 4 h the yellow solution was evaporated to half its volume and n-hexane was added to give the yellow precipitate. This was filtered off, washed with n-hexane, and dried in vacuo; it was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathbf{n}$-hexane under dinitrogen.
$\overline{\mathrm{Pt}\left\{\mathrm{ON}\left(\mathrm{Bu} \mathrm{t}^{t} \mathrm{C}(\mathrm{O}) \mathrm{N} P h\right\}\left(\mathrm{PPh}_{3}\right)_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{VIII})\right.}$
To $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{NO}\right)$ (300 mg) was added a solution of $\mathrm{PhNCO}(133 \mathrm{mg})$ in benzene (18 ml) degassed with dinitrogen. After 3.5 h the red-orange solution was evaporated to small volume and n-hexane was added to give a yellow-orange precipitate. This was filtered off under dinitrogen, washed with n-hexane, and isopropyl ether, and dried in vacuo. It was recrystallized from benzene/n-hexane under dinitrogen.
$\widehat{P t\left\{O N\left(C F_{3}\right) C(O) N P h\right\}\left(P_{3}\right)_{2}(I X)}$
To $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CF}_{3} \mathrm{NO}\right)$ (325 mg) was added a solution of $\mathrm{PhNCO}(142 \mathrm{mg})$ in benzene (20 ml) degassed with dinitrogen. After 4 h the pale-yellow product was
filtered off under dinitrogen, washed with benzene, and dried in vacuo. It was recrystallized from benzene/n-hexane under dinitrogen.
$\left.\overline{P t\left\{O N\left(B u^{t}\right) C(N P h) S\right.}\right\}\left(P^{\left(P h_{3}\right.}\right)_{2}(X)$
To $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{NO}\right)(180 \mathrm{mg})$ was added a solution of $\mathrm{PhNCS}(90.5 \mathrm{mg})$ in benzene (12 ml). After 4 h the red-orange solution was evaporated to small volume, and n-hexane, was added, to give an orange precipitate. This was filtered off, washed with n-hexane, and dried in vacuo. It was recrystallized from benzene/nhexane under dinitrogen.
$\overline{\mathrm{Pt}\left\{\mathrm{ON}_{\left(C F_{3}\right) C(N P h) S}^{S}\right\}\left(\mathrm{PPh}_{3}\right)_{2}(X I)}$
To $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CF}_{3} \mathrm{NO}\right)$ (194 mg) was added a solution of $\mathrm{PhNCS}(96 \mathrm{mg})$ in benzene (18 ml). After 3.5 h the yellow solution was evaporated to small volume and n-hexane degassed with dinitrogen was added to give a yellow precipitate. This was filtered off under dinitrogen, washed with n-hexane, and dried in vacuo. It was recrystallized from benzene/ n-hexane under dinitrogen.
$\left.\overline{P t\left\{O N\left(B u^{t}\right) C H(P h) C\right.}(C N)_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}(X I I)$
Benzene (20 ml) was added to a mixture of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{NO}\right)(300 \mathrm{mg})$ and $\mathrm{PhCH}=\mathrm{C}(\mathrm{CN})_{2}(115 \mathrm{mg})$. After 3.5 h the yellow solution was evaporated to small volume and n -hexane was added to give a yellow precipitate. This was filtered off, washed with n-hexane, and dried in vacuo. It was recrystallized from benzene $/ \mathrm{n}$ hexane under dinitrogen.
$\overline{\left.\mathrm{Pt}\left\{\mathrm{ON}_{(} \mathrm{CF}_{3}\right) \mathrm{CH}(\mathrm{Ph}) \mathrm{C}(\mathrm{CN})_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{XIII})}$
Benzene (30 ml) was added to a mixture of $\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CF}_{3} \mathrm{NO}\right)(300 \mathrm{mg})$ and $\mathrm{PhCH}=\mathrm{C}(\mathrm{CN})_{2}(113 \mathrm{mg})$. After 3.5 h the yellow solution was evaporated to small volume and n-hexane was added to give a white precipitate. This was filtered off, washed with n -hexane, and dried in vacuo. It was recrystallized from benzene $/ \mathrm{n}$ hexane under dinitrogen.
$\left.\overline{P t\left\{O N\left(C F_{3}\right) C(C N)_{2} C\right.}(C N)_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}(X I V)$
Benzene (20 ml), degassed with N_{2}, was added to a mixture of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CF}_{3} \mathrm{NO}\right)$ $(300 \mathrm{mg})$ and $(\mathrm{CN})_{2} \mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}(59 \mathrm{mg})$. After 3 h a yellow precipitate was filtered off under dinitrogen, washed with benzene, and dried in vacuo. It was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{n}$-hexane under dinitrogen.
$P \mathrm{Pt}\left\{\mathrm{ON}\left(\mathrm{Bu}^{t}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{XV})$
To a solution of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{NO}\right)(308 \mathrm{mg})$ in benzene $(20 \mathrm{ml})$ was added a solution of $\mathrm{MeO}_{2} \mathrm{CC} \equiv \mathrm{CCO}_{2} \mathrm{Me}$ (108 mg) in benzene (5 ml). After 3 h the orange solution was evaporated to small volume and n-hexane was added to give an orange precipitate. This was filtered off, washed with n-hexane, and dried in vacuo. It was recrystallized from benzene/n-hexane under dinitrogen.
$\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{RNO})+\mathrm{CO}\left(\mathrm{R}=\mathrm{Ph}, \mathrm{Bu}^{t}, \mathrm{CF}_{3}\right)$
CO was bubbled through benzene $(20 \mathrm{ml})$ for few minutes and $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{RNO})$ was then added (ca. 300 mg). The gas evolved was bubbled into a solution of

Table 4
Crystal data and intensity collection parameters

Compound	$\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{PhNO})(\mathrm{I})$
Formula	$\mathrm{C}_{42} \mathrm{H}_{35} \mathrm{NOP}_{2} \mathrm{Pt}$
FW (amu)	826.79
Crystal system	monoclinic
Space group	$P 2_{1} / \mathrm{c}$ (nr .14)
$a(\AA)$	14.228(4)
$b(\AA)$	13.914(3)
$c(\AA)$	17.855(4)
$\beta\left({ }^{\circ}\right)$	100.31(2)
$U\left(\AA^{3}\right)$	3478(3)
Z	4
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.579
$\mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)\left(\mathrm{cm}^{-1}\right)$	41.99
Min. transmission factor	0.93
Crystal dimensions (mm)	$0.12 \times 0.13 \times 0.15$
Scan mode	ω
ω-scan width (${ }^{\circ}$)	$1.0+0.35 \tan \theta$
θ-range (${ }^{\circ}$)	3-24
Octants of reciprocal space explored	$\pm h,+k,+l$
Measured reflections	6086
Unique observed reflections with $I>3 \sigma(I)$	3609
final R and R_{w} indices "	0.026, 0.030
No. of variables	424
ESD ${ }^{\text {b }}$	0.957

${ }^{a} R=\left[\Sigma\left(F_{0}-k\left|F_{\mathrm{c}}\right|\right) / \Sigma F_{0}\right] ; R_{\mathrm{w}}=\left[\Sigma w\left(F_{0}-k\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w F_{0}{ }^{2}\right]^{1 / 2} .{ }^{b} \operatorname{ESD}=\left[\Sigma w\left(F_{0}-k\left|F_{\mathrm{c}}\right|\right)^{2} /(N O-\right.$ $N V)]^{1 / 2}$.
$\mathrm{Ba}(\mathrm{OH})_{2}$ to permit detection of CO_{2}. After $17 \mathrm{~h}\left(\mathrm{R}=\mathrm{Bu}^{\mathrm{t}}\right)$ the solution was evaporated to small volume, then n-hexane was added to give an orange precipitate. No formation of CO_{2} was observed. The orange compound was filtered off, washed with n -hexane and dried in vacuo. Its IR data and elemental analysis were consistent with the formulation $\mathrm{Pt}_{3}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{x}(x=3$ or 4$)$ [16]. The same orange compound was obtained from the carbonylation of $\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{RNO})(\mathrm{R}=$ $\mathrm{Ph}, \mathrm{CF}_{3}$). In the latter case, however, CO_{2} was detected among the products.

Structure determination

Crystal data and details of the procedures used in determination of the structure of compound I are summarized in Table 4. The diffraction experiments were carried out on an Enraf-Nonius CAD-4 diffractometer at room temperature using Mo- K_{α} radiation ($\lambda 0.71073 \AA$). The unit cell parameters were determined by least-squares refinement of the setting angles of 25 high- θ reflections. The diffraction intensities were corrected for Lorentz, polarization, and absorption (empirical correction [19]). Anomalous dispersion corrections for atomic scattering factors were taken from ref. 20. The structure was solved by conventional Patterson and Fourier techniques and refined by full-matrix least-squares, the minimized function being $\Sigma w\left(F_{0}-k\left|F_{\mathrm{c}}\right|\right)^{2}$. Weights assigned to individual observations were $w=1 /\left(\sigma F_{0}\right)^{2}$ where $\sigma\left(F_{0}\right)=$ $\left[\sigma^{2}(I)+(0.04 \cdot I)^{2}\right]^{1 / 2} / 2 F_{0} L p$. In the last cycles of the refinement the hydrogen

Table 5
Positional parameters for non-hydrogen atoms with esd's in parentheses

Atom	x	y	z
Pt	0.18106(2)	0.01681(2)	0.24540(1)
$\mathrm{P}(1)$	0.2929(1)	0.0243(1)	0.35083(8)
P (2)	0.0804(1)	0.1422(1)	0.25127(9)
O	0.1346 (3)	-0.0526(4)	0.1456(3)
N	0.2173(4)	-0.1000(4)	0.1832(3)
C(1)	0.2972(5)	0.0763(4)	0.1500 (3)
C(2)	0.2974(6)	-0.0102(5)	0.0923(4)
C(3)	0.3812(7)	0.0059(5)	$0.0644(4)$
C(4)	$0.4638(6)$	-0.0425(7)	0.0919 (5)
C(5)	0.4632(6)	-0.1092(6)	0.1480 (5)
C(6)	0.3809(5)	-0.1273(5)	$0.1764(4)$
C(111)	0.4090(4)	0.0416(4)	0.3229(3)
C(112)	0.4175(5)	$0.1111(5)$	$0.2685(4)$
$\mathrm{C}(113)$	0.5049(6)	0.1267(6)	0.2457(5)
C(114)	0.5821(5)	$0.0723(6)$	$0.2750(4)$
C(115)	0.5743(5)	0.0023(5)	0.3282(4)
$\mathrm{C}(116)$	0.4891(5)	-0.0119(5)	$0.3515(4)$
C(121)	0.2949(5)	$0.1123(4)$	0.4277(3)
C(122)	0.3746(5)	0.1681 (5)	0.4540(4)
C(123)	0.3763(7)	$0.2284(6)$	0.5156(5)
C(124)	0.2973 (7)	0.2366 (5)	0.5496(4)
C(125)	$0.2174(6)$	$0.1830(6)$	0.5234(4)
C(126)	0.2163(5)	0.1209(5)	0.4635(4)
C(131)	0.3050(4)	-0.0897(4)	0.4023(4)
C(132)	0.3457(5)	-0.0967(5)	0.4792(4)
C(133)	$0.3564(6)$	-0.1844(5)	0.5152(4)
C(134)	0.3279(6)	-0.2663(5)	0.4762(5)
C(135)	0.2881 (7)	-0.2626(5)	0.3995(5)
C(136)	0.2755(5)	-0.1744(5)	0.3626(4)
C(211)	0.1320 (5)	0.2549(4)	0.2912(4)
C(212)	0.2058(5)	0.2939(5)	$0.2587(5)$
C(213)	0.2491 (6)	0.3782(6)	0.2876(6)
C(214)	0.2220(7)	0.4220(6)	0.3497(6)
C(215)	0.1513(7)	0.3842(6)	$0.3819(5)$
C(216)	0.1055(6)	0.3003(5)	0.3530(4)
C(221)	0.0183(4)	0.1761(5)	0.1561(3)
C(222)	-0.0066(6)	0.2700(5)	0.1355 (4)
C(223)	-0.0530(6)	0.2895(5)	0.0622(4)
C(224)	-0.0785(6)	0.2180 (6)	0.0098(4)
C(225)	-0.0553(7)	0.1254(6)	0.0309(4)
C(226)	-0.0079(6)	0.1042(6)	0.1034(4)
C(231)	-0.0172(4)	0.1168(4)	0.3019 (3)
$\mathrm{C}(232)$	-0.0145(4)	0.0349(4)	0.3452(4)
C(233)	-0.0874(5)	$0.0137(5)$	0.3850(4)
C(234).	-0.1644(5)	0.0755(5)	0.3801(4)
C(235)	-0.1678(5)	0.1559(5)	0.3369(4)
C(236)	-0.0955(5)	0.1787(5)	0.2969(4)

atoms were included at calculated positions with C-H $0.95 \AA$. All the computations were carried out on a PDP $11 / 34$ computer using the Enraf-Nonius SDP package of programs [21].

References

1 S. Cenini, M. Pizzotti and C. Crotti in R. Ugo (Ed.), Aspects of Homogeneous Catalysis, Vol. VI, D. Reidel, Dordrecht, The Netherlands, in press.
2 P.L. Bellon, S. Cenini, F. Demartin, M. Pizzotti and F. Porta, J. Chem. Soc., Chem. Commun., (1982) 265.

3 S. Cenini, F. Porta, M. Pizzotti and G. La Monica, J. Chem. Soc., Dalton Trans., (1984) 355.
4 S. Cenini, F. Porta, M. Pizzotti and C. Crotti, J. Chem. Soc., Dalton Trans., (1985) 163.
5 F. Demartin, M. Pizzotti, F. Porta and S. Cenini, J. Chem. Soc., Dalton Trans., (1987) 605.
6 S.D. Ittel and J.A. Ibers, Inorg. Chem., 12 (1973) 2290.
7 P.L. Bellon, S. Cenini, F. Demartin, M. Manassero, M. Pizzotti and F. Porta, J. Chem. Soc., Dalton Trans., (1980) 2060.
8 D. Mansuy, M. Dreme, J.C. Chottard and J. Guilhem, J. Organomet. Chem., 161 (1978) 207.
9 L.S. Liebeskind, K.B. Sharpless, R.D. Wilson and J.A. Ibers, J. Amer. Chem. Soc., 100 (1978) 7061.
10 M.J. Barrow and O.S. Mills, J. Chem. Soc. (A), (1971) 864.
11 M. Calligaris, T. Yoshida and S. Otsuka, Inorg. Chim. Acta, 11 (1974) L15.
12 D. Mansuy, M. Dreme, J.C. Chottard, J.P. Girault and J. Guilhem, J. Amer. Chem. Soc., 102 (1980) 844.

13 L. Malatesta and S. Cenini, Zerovalent Compounds of Metals, Academic Press, London, 1974.
14 M. Green, R.B. Osborne, A.J. Rest and F.G.A. Stone, J. Chem. Soc. (A), (1968) 2525.
15 P.J. Hayward, D.M. Blake, G. Wilkinson and C.J. Nyman, J. Amer. Chem. Soc., 92 (1970) 5873.
16 J. Chatt and P. Chini, J. Chem. Soc. (A), (1970) 1538.
17 R. Ugo, F. Cariati and G. La Monica, Inorg. Synth., 11 (1968) 106.
18 C.D. Cook and G.S. Jauhal, J. Amer. Chem. Soc., 90 (1968) 1464.
19 A.C.T. North, D.C. Phillips and F.S. Mathews, Acta Cryst., A24 (1968) 351.
20 International Tables for X-ray Crystallography. The Kynoch Press, Birmingham, Vol. 4, 1974.
21 S.D.P. Plus, Version 1.0, Enraf-Nonius, Delft, The Netherlands 1980.

[^0]: * Dedicated to Professor Luigi Sacconi in recognition of his important contributions to organometallic chemistry.

